Zarr - scalable storage of tensor
data for parallel and distributed
computing

Alistair Miles (@alimanfoo) - SciPy 2019

These slides: https://zarr-developers.github.io/slides/scipy-2019.html

https://github.com/alimanfoo
https://zarr-developers.github.io/slides/scipy-2019.html

LETTER

Malaria prevention in Africa

d0i:10.1038/naturo24995

Genetic diversity of the African malaria vector

Anopheles gambiae

The Anophele:

The sustainability of malaria control in Africa is threatened by
the rise of ins tance in Anopheles mosquitoes, which
transmit the disease'. To gain a deeper understanding of how
mosquito populations are evolving, here we sequenced the genomes
of 765 specimens of Anopheles gambiae and Anopheles coluzzii
sampled from 15 locations across Africa, and identified over
50 million single nucleotide polymorphisms within the accessible
genome. These data revealed complex population structure and
patterns of gene flow, with evidence of ancient expansions, recent
bottlenecks, and local variation in effective population size. Strong
signals of recent selection were observed in insecti

enes, with several sweeps spreading over large geographic

istan ind between species. The design of new tools for mosquito
control using gene-drive systems will need to take account of high
levels of genetic diversity in natural mosqui i

Rload-sucking mosauitaes.of the Au_cam!

g. 3b) and more than
ded Data Fig, 3¢), confirming
lly diverse eukaryot

High levels of natural diversity have practical implication:
development of gene-drive technologies for mosquito cc
gene drive it a specific ge
and confer a phenotype such as female sterility, which could suppress
mosquito populations and thereby reduce disease transmission.
However, naturally occurring polymarphisms within the approx
/ent targe
n the field. We found
5,474

n be designed t

fon, and thus undermine gene-drive efficacy
viable Cas9 targets 5 protein-coding genes, but onl
genes remained after excluding target sites with nucleotide
in any of the 765 enced here (Extended Data Fig. 3d;

Resistance to gene drive could be

Motivation: Why Zarr?

Problem statement

B [| [B [[
B [[]] B [[]
[,
L |] |

e | |
e |

There is some computation we want to perform.

Inputs and outputs are multidimensional arrays (a.k.a.
tensors).

5 key features...

(1) Larger than memory

Input and/or output tensors are too big to fit comfortably in
main memory.

(2) Computation can be parallelised

B | [[

| | [
e | | |
| |

e | |

At least some part of the computation can be parallelised by
processing data in chunks.

E.g., embarassingly parallel

B\ N

Ll AR
BN N\
L e W W

B | []

B [[|]
e |
B | |

e | |
] |
——

(3) 1/O is the bottleneck

Computational complexity is moderate > significant amount
of time is spent in reading and/or writing data.

N.B., bottleneck may be due to (a) limited I/O bandwidth, (b)
1/O is not parallel.

(4) Data are compressible

e Compression is a very active area of innovation.

e Modern compressors achieve good compression ratios
with very high speed.

e Compression can increase effective |/O bandwidth,
sometimes dramatically.

(5) Speed matters

® Rich datasets - exploratory science - interactive analysis >

many rounds of summarise, visualise, hypothesise, model, test,
repeat.

e E.g., genome sequencing.

= Now feasible to sequence genomes from 100,000s of individuals and
compare them.

m Each genome is a complete molecular blueprint for an organism >
can investigate many different molecular pathways and processes.

® Fach genome is a history book handed down through the ages, with

each generation making its mark > can look back in time and infer
major demographic and evolutionary events in the history of
populations and species.

Problem: key features

0. Inputs and outputs are
tensors.

1. Data are larger than memory.

2. Computation can be

parallelised.

3.1/0O is the bottleneck.

4, Data are compressible.

5. Speed matters.

Solution

1. Chunked, parallel tensor computing
framework.
2. Chunked, parallel tensor storage library.

Align the chunks!

7)DASK

Parallel computing framework for chunked tensors.

dask.array da

a

X da.from array(a)

y (x - x.mean (axis=1)) / x.std(axis=1)
u, s, v = da.linalg.svd compressed(y, 20)
u = u.compute ()

e Write code using a numpy-like API.
e Parallel execution on local workstation, HPC cluster,
Kubernetes cluster, ...

PANG=0

A community platform for Big Data geoscience

Scale up ocean / atmosphere / land / climate science.
Aim to handle petabyte-scale datasets on HPC and cloud
platforms.

Using Dask.

Needed a tensor storage solution.

Interested to use cloud object stores: Amazon S3, Azure
Blob Storage, Google Cloud Storage, ...

Tensor storage: prior art

h5py

HDF5 (h5py)

Store tensors ("datasets").
Divide data into regular chunks.
Chunks are compressed.
Group tensors into a hierarchy.
Smooth integration with
NumpPy...

x = hbpy.File('example.hb'") ['x"']

y = x[:1000]

HDF5 - limitations

e No thread-based parallelism.

e Cannot do parallel writes with compression.

e Not easy to plug in a new compressor.

e No support for cloud object stores (but see
Kita).

See also moving away from HDF5 by Cyrille Rossant.

https://www.hdfgroup.org/solutions/hdf-kita/hdf-kita-architecture
https://cyrille.rossant.net/moving-away-hdf5/

bcolz

e Developed by Francesc Alted.

e Chunked storage, primarily intended for storing 1D arrays
(table columns), but can also store tensors.

e Implementationis simple (in a good way).

e Data format on disk is simple - one file for metadata, one
file for each chunk.

e Showcase for the Blosc compressor.

https://github.com/FrancescAlted
http://blosc.org/

bcolz - limitations

e Chunkingin 1 dimension only.
e No support for cloud object
stores.

How hard could it be ...

... to implement a chunked storage library for tensor data
that supported parallel reads, parallel writes, was easy to
plug in new compressors, and easy to plug in different
storage systems like cloud object stores?

<montage/>

3 years, 1,107 commits, 39 releases, 259
‘Mlissues, 165 PRs, and at least 2 babies later

Zarr Python

$ pip install zarr
$ conda install -c conda-forge zarr

zarr
zarr. version
'2.3.2"

Conceptual model based on HDF5

e Multiple arrays (a.k.a. datasets) can be created and organised
into a hierarchy of groups.

e Each array is divided into regular shaped chunks.
e Each chunkis compressed before storage.

Creating a hierarchy

store = zarr.DirectoryStore('example.zarr')
root = zarr.group (store)
root

<zarr.hierarchy.Group '/'>

Using DirectoryStore the data will be stored in a directory on
the local file system.

Creating an array

hello = root.zeros('hello',
shape= (10000, 10000),
chunks= (1000, 1000),
dtype='<i4")
hello
<zarr.core.Array '/hello' (10000, 10000) int32>

® Creates a 2-dimensional array of 32-bit integers with 10,000 rows
and 10,000 columns.

¢ Divided into chunks where each chunk has 1,000 rows and 1,000
columns.

® There will be 100 chunks in total, arranged in a 10x10 grid.

Creating an array (h5py-style API)

hello = root.create dataset('hello',
shape=(10000, 10000),
chunks=(1000, 1000),
dtype='<i4d")
hello
<zarr.core.Array '/hello' (10000, 10000) int32>

Creating an array (big)

big = root.zeros('big',
shape=(100 000 000, 100 000 _000),
chunks=(10 000, 10 000),
dtype="'14")
big
<zarr.core.Array '/big' (100000000, 100000000) int32>

Creating an array (big)

big.info
Name : /big
Type : zarr.core.Array
Data type : 1nt32
Shape : (100000000, 100000000)
Chunk shape : (10000, 10000)
Order : C
Read-only :
Compressor : Blosc(cname='1z4"', clevel=5, shuffle=SHUFFLE, b
Store type : zarr.storage.DirectoryStore
No. bytes : 40000000000000000 (35.5P)
No. bytes stored : 355
Storage ratio : 112676056338028.2

Chunks initialized : 0/100000000

e That's a 35 petabyte array.
e N.B., chunks are initialized on
write.

Writing data into an array

big[0, 0:20000] = np.arange (20000)
big[0:20000, 0] = np.arange (20000)

e Same API as writing into numpy array or h5py
dataset.

Reading data from an array

big[0:1000, 0:1000]
array([[0, 1, 2, ..., 997, 998, 999],
r 1, o 0O, ..., 0, 0, 01,
[2/ O/ O/ e e oy O/ O/ O]/
(997, o0, O, ..., 0, 0, 01,
(998, o0, O, ..., 0O, 0, 01,
(999, 0, O, ..., 0, 0, 0]], dtype=int32)

e Same API as slicing a numpy array or reading from an
h5py dataset.

Chunks are initialized on write

big.info
Name
Type
Data type
Shape
Chunk shape
Order
Read-only
Compressor
Store type
No. bytes
No. bytes stored
Storage ratio
Chunks initialized

/big
zarr.core.Array
int32
(100000000,
(10000, 10000)
C

Blosc (cname="'1z4",

100000000)

clevel=5,

zarr.storage.DirectoryStore

40000000000000000
5171386 (4.9M)
7734870303.6
3/100000000

(35.5P)

shuffle=SHUFFLE,

b

S tree -a example.zarr
example.zarr
— big

= O O

V O O

— .2

—— hello
L

rray

.zarray
—— .zgroup

2 directories, 6 files

Files on disk

Array metadata

S cat example.zarr/big/.zarray

{

"chunks": |
10000,
10000

1y

"compressor": {
"blocksize": O,
"clevel”: 5,
"cname": "1z4",
"id": "blosc",

"shuffle": 1
Yo
"dtype": "<i4",
"fill value": O,
"filters": null,
"order": "C",
"shape": [
100000000,
100000000
] 14

"zarr format": 2

Reading unwritten regions

big[-1000:, -1000:]
array([[0O, O, O, ..., O, O, O],
(o, o, 6, ..., 0, 0, 0],
(o, o, 6, ..., 0, 0, 0],
(o, o, 6, ..., 0, 0, 01,
(¢, 9, O, .., @, G, O],
([, o, 0, ..., 0, 0, 0]1, dtype=int32)

e No data on disk, fill value is used (in this case
Zero).

Reading the whole array

bigl[:]
MemoryError

e Read the whole array into memory (if you
can!)

Pluggable storage

zarr.DirectoryStore, zarr.ZipStore,
zarr.DBMStore, zarr.LMDBStore, zarr.SQL1iteStore,
zarr.MongoDBStore, zarr.RedisStore,
zarr.ABSStore, s3fs.S3Map, gcsfs.GCSMap, ...

https://zarr.readthedocs.io/en/stable/tutorial.html#storage-alternatives

DirectoryStore

store = zarr.DirectoryStore('example.zarr')
root = zarr.group (store)

big = root['big']

big

<zarr.core.Array '/big' (100000000, 100000000) int32>

DirectoryStore (reminder)

S tree -a example.zarr
example.zarr

— big

— 0.0

— 0.1

1.0

—— .zarray
—— hello

L .zarray
—— .zgroup

2 directories, 6 files

ZipStore

S cd example.zarr && zip -r0 ../example.zip ./*
store = zarr.ZipStore ('example.zip')
root = zarr.group (store)
big = root['big']
big

<zarr.core.Array '/big' (100000000, 100000000) int32>

Google cloud storage (via gcsfs)

S gsutil config
S gsutil rsync -ru example.zarr/ gs://zarr-demo/example.zarr/

gcsfts
gcs = gcsfs.GCSFileSystem(token='anon', access='read only')
store = gcsfs.GCSMap ('zarr-demo/example.zarr', gcs=gcs, check=
root = zarr.group (store)
big = root['big']

big
<zarr.core.Array '/big' (100000000, 100000000) int32>

https://github.com/dask/gcsfs

Google cloud storage

zarr-demo
Public

Objects Overview Permissions Bucket Lock

Upload files = Upload folder =~ Create folder

ilter by prefix...
F

Buckets / zarr-demo / example.zarr / big

Name Type Storage class

application/octet- Multi-
stream Regional

.zarray

application/octet- Multi-
stream Regional

application/octet- Multi-
stream Regional

application/octet- Multi-
stream Regional

Last modified

7/9/19,
10:44:59
AM UTC+1

7/9/19,
10:45:01
AM UTC+1

7/9/19,
10:45:02
AM UTC+1

7/9/19,
10:45:03
AM UTC+1

Public access

Public &

Public &

Public &

Public &2

Encryption

Google-
managed key

Google-
managed key

Google-
managed key

Google-
managed key

E.g., array with shape (10, 6) and chunk shape (5, 3) has 4 chunks in a 2 by 2 chunk grid, with
chunks identified by the keys ‘0.0’, ‘0.1’, ‘1.0’, “1.1".

~ Filters

}
.

(eololele, 10001111, 11001010, 11110010, ..)

Compressor

Store

(11101011, 10000001, 11111010, 10010010, ..
(60101010, 10001111, 11001010, 11110010, ..

(00111011, 1001010, 11111011, 11010110, ..

(00101010, 10001111, 11001010, 11116010, ..

Store interface

e Any storage system can be used with Zarr if it can provide a
key/value interface.

= Keys are strings, values are bytes.

® |n Python, we use the MutableMapping interface.
= getitem
= setitem
= 1ter

® |.e., anything dict-like can be used as a Zarr store.

E.g., ZipStore implementation

ZipStore (MutableMapping) :

__init (self, path, ...):
self.zf = zipfile.ZipFile(path, ...)

__getitem (self, key):
self.zf.open (key) f:
f.read()

__setitem (self, key, value):
self.zf.writestr (key, value)

iter (self):
key self.zf.namelist () :
key

(Actual implementation is slightly more complicated, but this is the essence.)

https://github.com/zarr-developers/zarr-python/blob/e61d6ae77f18e881be0b80e38b5366793f5a2860/zarr/storage.py#L1033

Parallel computing with Zarr

A Zarr array can have multiple concurrent readers™.

A Zarr array can have multiple concurrent writers”.

Both multi-thread and multi-process parallelism are
supported.

GIL is released during critical sections (compression and
decompression).

* Depending on the store.

Dask + Zarr

dask.array da
zarr
STORE = .
root = zarr.group (store)
big = root['big']
big = da.from array(big)

output = big * 42 + ...
o0 = output.compute ()

da.to zarr (output, store, component='output')

Seedocsforda.from array(),da.from zarr(),
da.to zarr(),da.store().

https://docs.dask.org/en/latest/array-api.html#dask.array.from_array
https://docs.dask.org/en/latest/array-api.html#dask.array.from_zarr
https://docs.dask.org/en/latest/array-api.html#dask.array.to_zarr
https://docs.dask.org/en/latest/array-api.html#dask.array.store

Write locks?

Writer 1 Weriter 2

e |f each writer is writing to a different region of an array,
and all writes are alighed with chunk boundaries, then
locking is not required.

Write locks?

Writer 1 Writer 2 Writer 3

e |f each writer is writing to a different region of an array,
and writes are not aligned with chunk boundaries, then
locking is required to avoid contention and/or data loss.

Write locks?

e Zarr does support chunk-level write locks for either multi-
thread or multi-process writes.

e But generally easier and better to align writes with chunk
boundaries where possible.

See Zarr tutorial for further info on synchronisation.

https://zarr.readthedocs.io/en/stable/tutorial.html#parallel-computing-and-synchronization

Pluggable compressors

Compressor benchmark (genomic

Benchmark summary (multi-threaded Blosc)

..——— 185X Blosc{cname="z4', clevel=5, shuffle=0)

—
4
=
=
=
ar
i}
=3
]
=
=]
i
%]
a©
=
[=9
E
=1
(=]
-
]

.—- 38.7X Blosc{cname="zstd), clevel=1, shuffle=0)

o0 “—- 29.1X Blosc{cname=lz4', clevel=1, shuffle=2)
.—-—.3 1X Blosc{cname="zstd", clevel=1, shuffle=2)

other MOSHUFFLE

blosc+snappy BITSHUFFLE

blosc+blosclz 10¥ compressicn ratio
blosc+iz4 20 compressicn ratio
blosc+izdhe 30¥ compression ratic
blasc+zlib 40X compression ratio
blosc+zsid 50 compression ratic

|
8000

Compression speed (M/s)

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

Available compressors (via numcodecs)
Blosc, Zstandard, LZ4, Zlib, BZ2, LZMA, ...

Zarr
numcodecs Blosc
store = zarr.DirectoryStore('example.zarr')
root = zarr.group (store)

compressor = Blosc(cname='zstd', clevel=1, shuffle=Blosc.BITSHUFFLE)
big2 = root.zeros('big2',

shape= (100 000 _000, 100 000 000),

chunks=(10_000, 10 000),

dtype='14",

compressor=compressor)

https://numcodecs.readthedocs.io/en/stable/

Compressor interface

The numcodecs Codec AP| defines s nmcodecs be, Codls
the interface for filters and C“j”bf:_a:t el
compressors for use with Zarr.

encode(buf)

Encode data in buf.

Built around the Python buffer bt

roto CO l Data to be encoded. May be any object supporting the new-style buffer
p 0 protocol or array.array under Python 2.

Returns: enc : buffer-like

Encoded data. May be any object supporting the new-style buffer
protocol or array.array under Python 2.

decode(buf, out=None)

Decode data in buf.

Parameters: buf : buffer-like

Encoded data. May be any object supporting the new-style buffer
protocol or array.array under Python 2.

out : buffer-like, optional

Writeable buffer to store decoded data. N.B. if provided, this buffer
must be exactly the right size to store the decoded data.

Returns: dec : buffer-like

Decoded data. May be any object supporting the new-style buffer
protocol or array.array under Python 2.

https://numcodecs.readthedocs.io/en/stable/abc.html
https://docs.python.org/3/c-api/buffer.html

Zlib (Codec) :

__init (self, level=l):
self.level = level

encode (self, buf):

buf = ensure contiguous ndarray (buf)

zlib.compress (buf, self.level)
decode (self, buf, out=None):
buf = ensure contiguous ndarray (buf)
out
out = ensure contiguous ndarray (out)
dec = zlib.decompress (buf)

ndarray copy (dec, out)

Zarr specification

Docs » Specifications » Zarr storage specification version 2 © Edit on GitHub

Zarr storage specification version 2

This document provides a technical specification of the protocol and format used for storing Zarr
arrays. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT", “SHOULD”",
“SHOULD NOT” “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119.

Status

This specification is the latest version. See Specifications for previous versions.

Storage

A Zarr array can be stored in any storage system that provides a key/value interface, where a key is
an ASCII string and a value is an arbitrary sequence of bytes, and the supported operations are read
(get the sequence of bytes associated with a given key), write (set the sequence of bytes associated
with a given key) and delete (remove a key/value pair).

For example, a directory in a file system can provide this interface, where keys are file names,
values are file contents, and files can be read, written or deleted via the operating system. Equally,
an S3 bucket can provide this interface, where keys are resource names, values are resource
contents, and resources can be read, written or deleted via HTTP.

Other Zarr implementations

e 75-C++implementation using xtensor

e Zarr.jl - native Julia implementation

e ndarray.scala - Scala implementation

e WIP: NetCDF and native cloud storage access via
Zarr

https://github.com/constantinpape/z5
https://github.com/meggart/Zarr.jl
https://github.com/lasersonlab/ndarray.scala
https://www.unidata.ucar.edu/blogs/news/entry/netcdf-and-native-cloud-storage

Integrations and applications

Xarray, Intake, Pangeo

e xarray.open_zarr(), xarray.Dataset.to_zarr().

e |ntake project for data catalogs has intake-xarray plugin with
Zarr support.

e Used by Pangeo for their cloud datastore ...

intake

cat url = 'https://raw.githubusercontent.com/pangeo-data/pangeo-data
cat = 1ntake.Catalog(cat url)

ds = cat.atmosphere.gmet vl.to dask()

(Here's the underlying data catalog entry.)

http://xarray.pydata.org/en/stable/generated/xarray.open_zarr.html#xarray-open-zarr
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_zarr.html#xarray-dataset-to-zarr
https://www.anaconda.com/intake-taking-the-pain-out-of-data-access/
https://intake-xarray.readthedocs.io/en/latest/quickstart.html
https://github.com/pangeo-data/pangeo-datastore
https://github.com/pangeo-data/pangeo-datastore/blob/aa3f12bcc3be9584c1a9071235874c9d6af94a4e/intake-catalogs/atmosphere.yaml#L6

m ' Informatics Lab S

Creating a data format for high
momentum datasets

ir=
‘: Theo McCaie in Informatics Lab

Mar 15 - 9 min read

Here in the Met Office we produce a lot of data, and we produce it fast. At
the time of writing we are creating and archiving approximately 200TB of
data a day. What’s more, much of this data becomes stale quickly. For
example, we re-run our high-resolution UK weather model every hour. If
you have not successfully loaded, parsed, processed and analysed that data
within an hour then your conclusions are going to be out of date. This is the
problem of “high momentum” data, data that is both big and changes
quickly.

At the Informatics Lab we’ve implemented a proposed specification change
to Zarr (a new cloud optimised file format) that lets us prepend, append
and “roll” these large, fast-moving datasets in an efficient, concurrent and
safe manner. This makes it possible to work with data sets that aren’t just

big but also fast moving.

https://medium.com/informatics-lab/creating-a-data-format-for-high-momentum-datasets-
a394fa48b671

https://medium.com/informatics-lab/creating-a-data-format-for-high-momentum-datasets-a394fa48b671

Microscopy (OME)

See OME's position regarding file formats.

https://blog.openmicroscopy.org/community/file-formats/2019/06/25/formats/

Single cell biology

e Work by Laserson lab using Zarr with ScanPy and AnnData
to scale single cell gene expression analyses.

e The Human Cell Atlas data portal uses Zarr for storage of
gene expression matrices.

e Use Zarr for image-based transcriptomics (starfish)?

https://github.com/lasersonlab/single-cell-experiments
https://scanpy.readthedocs.io/en/stable/
https://icb-anndata.readthedocs-hosted.com/en/stable/index.html
https://prod.data.humancellatlas.org/
https://prod.data.humancellatlas.org/pipelines/hca-pipelines/data-processing-pipelines/file-formats
https://spacetx-starfish.readthedocs.io/en/latest/

Future

o Zarr/N5
convergence.

e Zarr protocol spec
V3.

e Community!

https://github.com/saalfeldlab/n5
https://zarr-developers.github.io/zarr/specs/2019/06/19/zarr-v3-update.html
https://github.com/zarr-developers/community

Credits

Zarr core development team.

Everyone who has contributed code or raised or commented on
an issue or PR, thank you!

UK MRC and Wellcome Trust for supporting @alimanfoo.

Zarr is a community-maintained open source project - please
think of it as yours!

https://github.com/orgs/zarr-developers/teams/core-devs/members

