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Motivation: Why Zarr?Motivation: Why Zarr?



Problem statementProblem statement

There is some computation we want to perform.

Inputs and outputs are multidimensional arrays (a.k.a.
tensors).

5 key features...



(1) Larger than memory(1) Larger than memory
Input and/or output tensors are too big to fit comfortably in

main memory.



(2) Computation can be parallelised(2) Computation can be parallelised

At least some part of the computation can be parallelised by
processing data in chunks.



E.g., embarassingly parallelE.g., embarassingly parallel



(3) I/O is the bottleneck(3) I/O is the bottleneck
Computational complexity is moderate → significant amount

of time is spent in reading and/or writing data.

N.B., bottleneck may be due to (a) limited I/O bandwidth, (b)
I/O is not parallel.



(4) Data are compressible(4) Data are compressible
Compression is a very active area of innovation.
Modern compressors achieve good compression ratios
with very high speed.
Compression can increase effective I/O bandwidth,
sometimes dramatically.



(5) Speed matters(5) Speed matters
Rich datasets → exploratory science → interactive analysis →
many rounds of summarise, visualise, hypothesise, model, test,
repeat.
E.g., genome sequencing.

Now feasible to sequence genomes from 100,000s of individuals and
compare them.
Each genome is a complete molecular blueprint for an organism →
can investigate many different molecular pathways and processes.
Each genome is a history book handed down through the ages, with
each generation making its mark → can look back in time and infer
major demographic and evolutionary events in the history of
populations and species.



Problem: key featuresProblem: key features
0. Inputs and outputs are

tensors.
1. Data are larger than memory.
2. Computation can be

parallelised.
3. I/O is the bottleneck.
4. Data are compressible.
5. Speed matters.



SolutionSolution
1. Chunked, parallel tensor computing

framework.
2. Chunked, parallel tensor storage library.

Align the chunks!



Parallel computing framework for chunked tensors.

Write code using a numpy-like API.
Parallel execution on local workstation, HPC cluster,
Kubernetes cluster, ...

import dask.array as da 

 

a = ...  # what goes here? 

x = da.from_array(a) 

y = (x - x.mean(axis=1)) / x.std(axis=1) 

u, s, v = da.linalg.svd_compressed(y, 20) 

u = u.compute()



Scale up ocean / atmosphere / land / climate science.
Aim to handle petabyte-scale datasets on HPC and cloud
platforms.
Using Dask.
Needed a tensor storage solution.
Interested to use cloud object stores: Amazon S3, Azure
Blob Storage, Google Cloud Storage, ...



Tensor storage: prior artTensor storage: prior art



HDF5 (h5py)HDF5 (h5py)
Store tensors ("datasets").
Divide data into regular chunks.
Chunks are compressed.
Group tensors into a hierarchy.
Smooth integration with
NumPy...

import h5py 

x = h5py.File('example.h5')['x'] 

# read 1000 rows into numpy array 

y = x[:1000]



HDF5 - limitationsHDF5 - limitations
No thread-based parallelism.
Cannot do parallel writes with compression.
Not easy to plug in a new compressor.
No support for cloud object stores (but see

).

See also  by Cyrille Rossant.

Kita

moving away from HDF5

https://www.hdfgroup.org/solutions/hdf-kita/hdf-kita-architecture
https://cyrille.rossant.net/moving-away-hdf5/


bcolzbcolz

Developed by .
Chunked storage, primarily intended for storing 1D arrays
(table columns), but can also store tensors.
Implementation is simple (in a good way).
Data format on disk is simple - one file for metadata, one
file for each chunk.
Showcase for the .

Francesc Alted

Blosc compressor

https://github.com/FrancescAlted
http://blosc.org/


bcolz - limitationsbcolz - limitations
Chunking in 1 dimension only.
No support for cloud object
stores.



How hard could it be ...How hard could it be ...
... to implement a chunked storage library for tensor data
that supported parallel reads, parallel writes, was easy to

plug in new compressors, and easy to plug in different
storage systems like cloud object stores?



<montage/><montage/>

3 years, 1,107 commits, 39 releases, 259
issues, 165 PRs, and at least 2 babies later

...



Zarr PythonZarr Python
$ pip install zarr

$ conda install -c conda-forge zarr

>>> import zarr 

>>> zarr.__version__ 

'2.3.2'



Conceptual model based on HDF5Conceptual model based on HDF5
Multiple arrays (a.k.a. datasets) can be created and organised
into a hierarchy of groups.
Each array is divided into regular shaped chunks.
Each chunk is compressed before storage.



Creating a hierarchyCreating a hierarchy

Using DirectoryStore the data will be stored in a directory on
the local file system.

>>> store = zarr.DirectoryStore('example.zarr') 

>>> root = zarr.group(store) 

>>> root 

<zarr.hierarchy.Group '/'>



Creating an arrayCreating an array

Creates a 2-dimensional array of 32-bit integers with 10,000 rows
and 10,000 columns.
Divided into chunks where each chunk has 1,000 rows and 1,000
columns.
There will be 100 chunks in total, arranged in a 10x10 grid.

>>> hello = root.zeros('hello',  

...                    shape=(10000, 10000),  

...                    chunks=(1000, 1000),  

...                    dtype='<i4') 

>>> hello 

<zarr.core.Array '/hello' (10000, 10000) int32>



Creating an array (h5py-style API)Creating an array (h5py-style API)
>>> hello = root.create_dataset('hello',  

...                             shape=(10000, 10000),  

...                             chunks=(1000, 1000),  

...                             dtype='<i4') 

>>> hello 

<zarr.core.Array '/hello' (10000, 10000) int32>



Creating an array (big)Creating an array (big)
>>> big = root.zeros('big', 

...                  shape=(100_000_000, 100_000_000), 

...                  chunks=(10_000, 10_000), 

...                  dtype='i4') 

>>> big 

<zarr.core.Array '/big' (100000000, 100000000) int32>



Creating an array (big)Creating an array (big)

That's a 35 petabyte array.
N.B., chunks are initialized on
write.

>>> big.info 

Name               : /big 

Type               : zarr.core.Array 

Data type          : int32 

Shape              : (100000000, 100000000) 

Chunk shape        : (10000, 10000) 

Order              : C 

Read-only          : False 

Compressor         : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, bl

Store type         : zarr.storage.DirectoryStore 

No. bytes          : 40000000000000000 (35.5P) 

No. bytes stored   : 355 

Storage ratio      : 112676056338028.2 

Chunks initialized : 0/100000000



Writing data into an arrayWriting data into an array

Same API as writing into numpy array or h5py
dataset.

>>> big[0, 0:20000] = np.arange(20000) 

>>> big[0:20000, 0] = np.arange(20000)



Reading data from an arrayReading data from an array

Same API as slicing a numpy array or reading from an
h5py dataset.

>>> big[0:1000, 0:1000] 

array([[  0,   1,   2, ..., 997, 998, 999], 

       [  1,   0,   0, ...,   0,   0,   0], 

       [  2,   0,   0, ...,   0,   0,   0], 

       ..., 

       [997,   0,   0, ...,   0,   0,   0], 

       [998,   0,   0, ...,   0,   0,   0], 

       [999,   0,   0, ...,   0,   0,   0]], dtype=int32)



Chunks are initialized on writeChunks are initialized on write
>>> big.info 

Name               : /big 

Type               : zarr.core.Array 

Data type          : int32 

Shape              : (100000000, 100000000) 

Chunk shape        : (10000, 10000) 

Order              : C 

Read-only          : False 

Compressor         : Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, bl

Store type         : zarr.storage.DirectoryStore 

No. bytes          : 40000000000000000 (35.5P) 

No. bytes stored   : 5171386 (4.9M) 

Storage ratio      : 7734870303.6 

Chunks initialized : 3/100000000



Files on diskFiles on disk
$ tree -a example.zarr 

example.zarr 

├── big 

│   ├── 0.0 

│   ├── 0.1 

│   ├── 1.0 

│   └── .zarray 

├── hello 

│   └── .zarray 

└── .zgroup 

 

2 directories, 6 files



Array metadataArray metadata
$ cat example.zarr/big/.zarray  

{ 

    "chunks": [ 

        10000, 

        10000 

    ], 

    "compressor": { 

        "blocksize": 0, 

        "clevel": 5, 

        "cname": "lz4", 

        "id": "blosc", 

        "shuffle": 1 

    }, 

    "dtype": "<i4", 

    "fill_value": 0, 

    "filters": null, 

    "order": "C", 

    "shape": [ 

        100000000, 

        100000000 

    ], 

    "zarr_format": 2 

}



Reading unwritten regionsReading unwritten regions

No data on disk, fill value is used (in this case
zero).

>>> big[-1000:, -1000:] 

array([[0, 0, 0, ..., 0, 0, 0], 

       [0, 0, 0, ..., 0, 0, 0], 

       [0, 0, 0, ..., 0, 0, 0], 

       ..., 

       [0, 0, 0, ..., 0, 0, 0], 

       [0, 0, 0, ..., 0, 0, 0], 

       [0, 0, 0, ..., 0, 0, 0]], dtype=int32)



Reading the whole arrayReading the whole array

Read the whole array into memory (if you
can!)

>>> big[:] 

MemoryError



zarr.DirectoryStore, zarr.ZipStore,
zarr.DBMStore, zarr.LMDBStore, zarr.SQLiteStore,

zarr.MongoDBStore, zarr.RedisStore,
zarr.ABSStore, s3fs.S3Map, gcsfs.GCSMap, ...

Pluggable storagePluggable storage

https://zarr.readthedocs.io/en/stable/tutorial.html#storage-alternatives


DirectoryStoreDirectoryStore
>>> store = zarr.DirectoryStore('example.zarr') 

>>> root = zarr.group(store) 

>>> big = root['big'] 

>>> big 

<zarr.core.Array '/big' (100000000, 100000000) int32>



DirectoryStore (reminder)DirectoryStore (reminder)
$ tree -a example.zarr 

example.zarr 

├── big 

│   ├── 0.0 

│   ├── 0.1 

│   ├── 1.0 

│   └── .zarray 

├── hello 

│   └── .zarray 

└── .zgroup 

 

2 directories, 6 files



ZipStoreZipStore
$ cd example.zarr && zip -r0 ../example.zip ./*

>>> store = zarr.ZipStore('example.zip') 

>>> root = zarr.group(store) 

>>> big = root['big'] 

>>> big 

<zarr.core.Array '/big' (100000000, 100000000) int32>



Google cloud storage (via Google cloud storage (via ))gcsfsgcsfs
$ gsutil config 

$ gsutil rsync -ru example.zarr/ gs://zarr-demo/example.zarr/

>>> import gcsfs 

>>> gcs = gcsfs.GCSFileSystem(token='anon', access='read_only') 

>>> store = gcsfs.GCSMap('zarr-demo/example.zarr', gcs=gcs, check=Fal

>>> root = zarr.group(store) 

>>> big = root['big'] 

>>> big 

<zarr.core.Array '/big' (100000000, 100000000) int32>

https://github.com/dask/gcsfs


Google cloud storageGoogle cloud storage





Store interfaceStore interface
Any storage system can be used with Zarr if it can provide a
key/value interface.

Keys are strings, values are bytes.
In Python, we use the MutableMapping interface.
__getitem__

__setitem__

__iter__

I.e., anything dict-like can be used as a Zarr store.



E.g., ZipStore implementationE.g., ZipStore implementation

(  is slightly more complicated, but this is the essence.)

class ZipStore(MutableMapping): 

 

    def __init__(self, path, ...): 

        self.zf = zipfile.ZipFile(path, ...) 

 

    def __getitem__(self, key): 

        with self.zf.open(key) as f: 

            return f.read() 

 

    def __setitem__(self, key, value): 

        self.zf.writestr(key, value) 

 

    def __iter__(self): 

        for key in self.zf.namelist(): 

            yield key

Actual implementation

https://github.com/zarr-developers/zarr-python/blob/e61d6ae77f18e881be0b80e38b5366793f5a2860/zarr/storage.py#L1033


Parallel computing with ZarrParallel computing with Zarr
A Zarr array can have multiple concurrent readers*.
A Zarr array can have multiple concurrent writers*.
Both multi-thread and multi-process parallelism are
supported.
GIL is released during critical sections (compression and
decompression).

* Depending on the store.



Dask + ZarrDask + Zarr

See docs for , ,
, .

import dask.array as da 

import zarr 

 

# set up input 

store = ...  # some Zarr store 

root = zarr.group(store) 

big = root['big'] 

big = da.from_array(big) 

 

# define computation 

output = big * 42 + ... 

 

# if output is small, compute to memory 

o = output.compute() 

 

# if output is big, compute and write directly to Zarr 

da.to_zarr(output, store, component='output')

da.from_array() da.from_zarr()

da.to_zarr() da.store()

https://docs.dask.org/en/latest/array-api.html#dask.array.from_array
https://docs.dask.org/en/latest/array-api.html#dask.array.from_zarr
https://docs.dask.org/en/latest/array-api.html#dask.array.to_zarr
https://docs.dask.org/en/latest/array-api.html#dask.array.store


Write locks?Write locks?

If each writer is writing to a different region of an array,
and all writes are aligned with chunk boundaries, then
locking is not required.



Write locks?Write locks?

If each writer is writing to a different region of an array,
and writes are not aligned with chunk boundaries, then
locking is required to avoid contention and/or data loss.



Write locks?Write locks?
Zarr does support chunk-level write locks for either multi-
thread or multi-process writes.
But generally easier and better to align writes with chunk
boundaries where possible.

See Zarr tutorial for .further info on synchronisation

https://zarr.readthedocs.io/en/stable/tutorial.html#parallel-computing-and-synchronization


Pluggable compressorsPluggable compressors



Compressor benchmark (genomic data)Compressor benchmark (genomic data)

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html


Available compressors (via Available compressors (via ))
Blosc, Zstandard, LZ4, Zlib, BZ2, LZMA, ...

numcodecsnumcodecs

import zarr 

from numcodecs import Blosc 

 

store = zarr.DirectoryStore('example.zarr') 

root = zarr.group(store) 

compressor = Blosc(cname='zstd', clevel=1, shuffle=Blosc.BITSHUFFLE) 

big2 = root.zeros('big2',  

                  shape=(100_000_000, 100_000_000),  

                  chunks=(10_000, 10_000),  

                  dtype='i4',  

                  compressor=compressor) 

https://numcodecs.readthedocs.io/en/stable/


Compressor interfaceCompressor interface
The numcodecs  defines
the interface for filters and
compressors for use with Zarr.

Built around the 
.

Codec API

Python buffer
protocol

https://numcodecs.readthedocs.io/en/stable/abc.html
https://docs.python.org/3/c-api/buffer.html


class Zlib(Codec): 

 

    def __init__(self, level=1): 

        self.level = level 

 

    def encode(self, buf): 

 

        # normalise inputs 

        buf = ensure_contiguous_ndarray(buf) 

 

        # do compression 

        return zlib.compress(buf, self.level) 

 

    def decode(self, buf, out=None): 

 

        # normalise inputs 

        buf = ensure_contiguous_ndarray(buf) 

        if out is not None: 

            out = ensure_contiguous_ndarray(out) 

 

        # do decompression 

        dec = zlib.decompress(buf) 

 

        return ndarray_copy(dec, out) 



Zarr specificationZarr specification



Other Zarr implementationsOther Zarr implementations
 - C++ implementation using xtensor

 - native Julia implementation
 - Scala implementation

WIP: 

z5
Zarr.jl
ndarray.scala

NetCDF and native cloud storage access via
Zarr

https://github.com/constantinpape/z5
https://github.com/meggart/Zarr.jl
https://github.com/lasersonlab/ndarray.scala
https://www.unidata.ucar.edu/blogs/news/entry/netcdf-and-native-cloud-storage


Integrations and applicationsIntegrations and applications



Xarray, Intake, PangeoXarray, Intake, Pangeo

, .
 for data catalogs has  plugin with

Zarr support.
Used by Pangeo for their  ...

(Here's the .)

xarray.open_zarr() xarray.Dataset.to_zarr()
Intake project intake-xarray

cloud datastore

import intake 

cat_url = 'https://raw.githubusercontent.com/pangeo-data/pangeo-data

cat = intake.Catalog(cat_url) 

ds = cat.atmosphere.gmet_v1.to_dask()

underlying data catalog entry

http://xarray.pydata.org/en/stable/generated/xarray.open_zarr.html#xarray-open-zarr
http://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_zarr.html#xarray-dataset-to-zarr
https://www.anaconda.com/intake-taking-the-pain-out-of-data-access/
https://intake-xarray.readthedocs.io/en/latest/quickstart.html
https://github.com/pangeo-data/pangeo-datastore
https://github.com/pangeo-data/pangeo-datastore/blob/aa3f12bcc3be9584c1a9071235874c9d6af94a4e/intake-catalogs/atmosphere.yaml#L6


https://medium.com/informatics-lab/creating-a-data-format-for-high-momentum-datasets-
a394fa48b671

https://medium.com/informatics-lab/creating-a-data-format-for-high-momentum-datasets-a394fa48b671


Microscopy (OME)Microscopy (OME)

See .OME's position regarding file formats

https://blog.openmicroscopy.org/community/file-formats/2019/06/25/formats/


Single cell biologySingle cell biology
 using Zarr with  and 

to scale single cell gene expression analyses.
The  data portal uses Zarr for 

.
Use Zarr for image-based transcriptomics ( )?

Work by Laserson lab ScanPy AnnData

Human Cell Atlas storage of
gene expression matrices

starfish

https://github.com/lasersonlab/single-cell-experiments
https://scanpy.readthedocs.io/en/stable/
https://icb-anndata.readthedocs-hosted.com/en/stable/index.html
https://prod.data.humancellatlas.org/
https://prod.data.humancellatlas.org/pipelines/hca-pipelines/data-processing-pipelines/file-formats
https://spacetx-starfish.readthedocs.io/en/latest/


FutureFuture
Zarr/
convergence.

.

N5

Zarr protocol spec
v3
Community!

https://github.com/saalfeldlab/n5
https://zarr-developers.github.io/zarr/specs/2019/06/19/zarr-v3-update.html
https://github.com/zarr-developers/community


CreditsCredits
.

Everyone who has contributed code or raised or commented on
an issue or PR, thank you!
UK MRC and Wellcome Trust for supporting @alimanfoo.
Zarr is a community-maintained open source project - please
think of it as yours!

Zarr core development team

https://github.com/orgs/zarr-developers/teams/core-devs/members

